

BLUE OCEAN MARICULTURE

11/26/2024

Water Quality Monitoring – Nov. 2024

Prepared by

MEGA Lab UHH – CNHS 200 W. Kawili St. Hilo, HI 96720

BLUE OCEAN MARICULTURE

WATER QUALITY MONITORING – NOV. 2024

SAMPLING REPORT

Survey Date: 11/26/2024

Client: Blue Ocean Mariculture

Current: North

Log Number: BOM-WQ-NOV-2024

Environmental Conditions

Effluent samples were collected adjacent to the net pen containing the highest biomass of fish. Sample collection occurred approximately 2-hours after a feeding event at a distance of 3-meters from the pen. The pen was partially raised prior to sampling. The water was clear with no evidence of high turbidity, discoloration, visible sheen, foam, solids, or floating debris near the pen during the sampling event.

Samples were collected during a rising tide (0.6ft to 1.6ft) influenced by a 16% waning moon. Conditions consisted of 10-12kt Northwest winds that stayed relatively consistent throughout the duration of the sampling. A 4-5ft West-Northwest swell was present during sampling and stayed consistent throughout the entire sampling event. Overall, sea conditions were choppy with moderate and variable winds. Skies were clear with light clouds. The East side of the Island had experienced recent thunderstorms. The air had low levels of vog from the Kilauea geological activity. There were several large visible slicks at all sampling stations with low to moderate amounts of particulates observed in the water. There were schools of baitfish and ulua observed at the Effluent site.

A strong North current was evident during the time of sampling.

Description of sampling methods

Water samples are collected at the monitoring sites monthly throughout the year. Monitoring sites are at the effluent discharge location near the pen containing the highest biomass of fish, four zone of mixing sites, and two control sites. Effluent samples are collected down current from the net pen containing the highest biomass at the surface, mid-pen, and bottom of the receiving water two hours after feeding. Surface samples are collected no less than 1 meter or more than 5 meters below the surface, and no farther than 10 meters down current from the net pen. Mid-pen samples are collected at the mid-pen depth no farther than one 1 meter down current from the net pen. Bottom samples are collected no less than 1 meter or more than five 5 meters above the sea floor, and no farther than 10 meters down current from the net pen. Zone of Mixing (ZOM) samples are collected down-current from the facility at the boundaries of the ZOM. Samples are collected at the surface, mid-pen depth, and bottom of the receiving waters. Surface samples are collected not less than 1 meter or more than 5 meters below the surface samples are collected not less than 1 meter or more than 5 meters below the surface. Bottom samples are collected not less than 1 meter or more than 5 meters below the surface samples are collected not less than 1 meter or more than 5 meters below the surface samples are collected not less than 1 meter or more than 5 meters below the surface. Bottom samples are collected not less than 1 meter or more than 5 meters above the sea floor.

Water samples collected from the monitoring sites are filtered through pre-combusted (500° C, 6h) GF/F (Whatman) filters (pore size 0.7-µm), as well as directly collected for RAW samples. These water samples are transported to the laboratory on ice and stored at -20°C until analysis. Samples are analyzed for nitrate + nitrite (NO3- + NO2-), ammonium (NH4+), phosphate (PO43-), total dissolved phosphorus (TDP), and total dissolved nitrogen (TDN). The nutrient values are measured using standard autoanalyzer methods. Inorganic nitrogen and phosphorus will be considered indirect measure of terrigenous effluents. Values recorded below the minimum detection limit (MDL) are presented as '<MDL.'. The MDL is calculated with analysis of seven of the same samples (Gravimetric Standard C4, 10, 100, 10, 10 ug/L for NH3, Si, PO4, NO3, and NO2 respectively). These samples are analyzed in order to determine the standard deviation, which is multiplied by the degree of freedom in order to calculate the precise MDL. The gravimetric standards are analyzed throughout the runs to determine calibration drift. Copper values are determined with inductively coupled plasma-mass spectrometry (ICP-MS). Analytical mass and instrumental parameters are selected to ensure accurate and precise determination of copper by using known standards. Turbidity is measured for all samples collected from these locations using a turbidimeter. The turbidimeter is calibrated with known standards prior to analyzing the collected samples to ensure accuracy.

To characterize the conditions at each monitoring station during sampling events, physiochemical parameters (temperature, salinity, conductivity, dissolved oxygen concentration, dissolved oxygen percent saturation, pH) are measured on site using multi-parameter YSI and pH meters. The multi-parameter sonde sensors are calibrated prior to taking measurements using known standards.

LABORATORY TEST RESULTS

<u>ID</u>	<u>DATE</u>	<u>LAB ID</u>	NO2+ NO3	NH3			
			NUS	+NH4	PO4	TDP	TDI
		MDL	0.2	2.3	1.1	1.1	0.2
Z1B	11/26/24	31	0.07	<mdl< td=""><td>1.90</td><td>3.30</td><td>8.3</td></mdl<>	1.90	3.30	8.3
Z1M	11/26/24	34	0.07	<mdl< td=""><td><mdl< td=""><td>3.20</td><td>8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>3.20</td><td>8.8</td></mdl<>	3.20	8.8
Z1S	11/26/24	35	0.09	6.50	1.10	4.20	9.0
Z2B	11/26/24	36	0.08	<mdl< td=""><td>1.40</td><td>3.20</td><td>8.9</td></mdl<>	1.40	3.20	8.9
Z2M	11/26/24	37	0.07	<mdl< td=""><td><mdl< td=""><td>2.90</td><td>8.6</td></mdl<></td></mdl<>	<mdl< td=""><td>2.90</td><td>8.6</td></mdl<>	2.90	8.6
Z2S	11/26/24	38	<mdl< td=""><td>7.10</td><td><mdl< td=""><td>4.10</td><td>8.7</td></mdl<></td></mdl<>	7.10	<mdl< td=""><td>4.10</td><td>8.7</td></mdl<>	4.10	8.7
Z3B	11/26/24	43	0.06	<mdl< td=""><td>1.30</td><td>3.20</td><td>8.5</td></mdl<>	1.30	3.20	8.5
Z3M	11/26/24	44	0.05	<mdl< td=""><td>1.80</td><td>3.00</td><td>8.3</td></mdl<>	1.80	3.00	8.3
Z3S	11/26/24	45	0.07	<mdl< td=""><td><mdl< td=""><td>3.50</td><td>7.8</td></mdl<></td></mdl<>	<mdl< td=""><td>3.50</td><td>7.8</td></mdl<>	3.50	7.8
Z4B	11/26/24	46	0.07	<mdl< td=""><td><mdl< td=""><td>3.40</td><td>7.6</td></mdl<></td></mdl<>	<mdl< td=""><td>3.40</td><td>7.6</td></mdl<>	3.40	7.6
Z4M	11/26/24	47	0.09	<mdl< td=""><td>2.10</td><td>3.40</td><td>8.3</td></mdl<>	2.10	3.40	8.3
Z4S	11/26/24	50	<mdl< td=""><td><mdl< td=""><td>2.00</td><td>3.50</td><td>8.4</td></mdl<></td></mdl<>	<mdl< td=""><td>2.00</td><td>3.50</td><td>8.4</td></mdl<>	2.00	3.50	8.4
EB	11/26/24	59	0.07	<mdl< td=""><td>3.40</td><td>3.30</td><td>8.9</td></mdl<>	3.40	3.30	8.9
EM	11/26/24	60	<mdl< td=""><td><mdl< td=""><td>2.40</td><td>3.30</td><td>8.9</td></mdl<></td></mdl<>	<mdl< td=""><td>2.40</td><td>3.30</td><td>8.9</td></mdl<>	2.40	3.30	8.9
ES	11/26/24	61	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.10</td><td>8.4</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3.10</td><td>8.4</td></mdl<></td></mdl<>	<mdl< td=""><td>3.10</td><td>8.4</td></mdl<>	3.10	8.4
C1B	11/26/24	51	<mdl< td=""><td><mdl< td=""><td>1.60</td><td>3.20</td><td>8.1</td></mdl<></td></mdl<>	<mdl< td=""><td>1.60</td><td>3.20</td><td>8.1</td></mdl<>	1.60	3.20	8.1
C1M	11/26/24	52	<mdl< td=""><td><mdl< td=""><td>1.70</td><td>3.50</td><td>8.7</td></mdl<></td></mdl<>	<mdl< td=""><td>1.70</td><td>3.50</td><td>8.7</td></mdl<>	1.70	3.50	8.7
C1S	11/26/24	53	<mdl< td=""><td>2.80</td><td>3.40</td><td>3.60</td><td>8.8</td></mdl<>	2.80	3.40	3.60	8.8
C2B	11/26/24	54	0.08	<mdl< td=""><td>3.20</td><td>3.40</td><td>8.6</td></mdl<>	3.20	3.40	8.6
C2M	11/26/24	57	0.06	<mdl< td=""><td>2.50</td><td>3.20</td><td>9.2</td></mdl<>	2.50	3.20	9.2
C2S	11/26/24	58	0.07	5.20	4.10	3.90	8.7

LAB QUALITY CONTROL AND QUALITY ASSURANCE

FASPac II

Run date: 11/27/24 Configuration: BOM Offshore Run Name: BOM Offshore November 2024

							Total
						NO3 &	
				Si	PO4	NO ₂	NH3 & NH4
	Position	Identifier	Туре	μg/l	µg/l	µg/l	μg/l
22	2:54	GravStd C4	Unknown	94.6	10.3	10.7	10.0
23	2:55	GravStd C4	Unknown	94.3	10.3	10.8	8.6
24	2:56	GravStd C4	Unknown	94.2	9.9	10.7	9.6
27	2:57	GravStd C4	Unknown	93.8	9.5	10.8	9.5
28	2:58	GravStd C4	Unknown	93.6	9.5	10.8	9.8
29	2:59	GravStd C4	Unknown	94.8	10.1	10.8	10.8
30	0.125	GravStd C4	Unknown	92.8	10.1	10.7	10.6
Mean				94.0	10.0	10.8	9.8
std dev				0.679	0.341	0.053	0.735
MDL				2.1	1.1	0.2	2.3
18	SR:19	GravStd C3	Check Cal	243.0	23.1	26.8	25.1
39	SR:19	GravStd C3	Check Cal	245.5	23.6	27.0	24.1
62	SR:19	GravStd C3	Check Cal	246.7	23.1	27.1	26.1
85	SR:19	GravStd C3	Check Cal	255.4	22.5	27.6	25.4
99	SR:19	GravStd C3	Check Cal	-30.1	23.4	27.3	23.9

Mean	192.1	23.1	27.2	24.9
std dev	124.301	0.416	0.305	0.918

MDL Calculations: Analysis of seven of the same samples (Gravimetric Standard C4 10, 100, 10, 10 ug/L for NH3, Si, PO4, NO3 & NO2 respectively), determine Std Dev, multiply Std Dev by degree of freedom (3.14)

Gravimetric standards (different from the calibration standards) are analyzed throughout the run to determine calibration drift.

Total

GRAB SAMPLE RESULTS

Sample ID	<u>Time</u>	<u>Date</u>	<u>Dissolved Oxygen</u>	<u>Dissolved</u> <u>Oxygen</u>	<u>Temperature</u>
Z1B	8:50	11/26/24	6.28	97.22	80.42
Z1M	8:58	11/26/24	6.97	95.12	80.42
Z1S	9:02	11/26/24	6.41	92.62	80.60
Z2B	9:16	11/26/24	6.29	97.86	80.42
Z2M	9:20	11/26/24	6.91	98.64	80.42
Z2S	9:21	11/26/24	6.71	92.99	80.60
Z3B	9:32	11/26/24	6.33	91.93	80.42
Z3M	9:38	11/26/24	6.54	94.14	80.42
Z3S	9:41	11/26/24	6.96	99.14	80.60
Z4B	9:55	11/26/24	6.79	94.95	80.42
Z4M	9:59	11/26/24	6.29	96.62	80.42
Z4S	10:02	11/26/24	6.48	95.91	80.60
EB	10:20	11/26/24	6.45	95.89	80.42
EM	10:26	11/26/24	6.56	92.79	80.42
ES	10:32	11/26/24	6.76	92.95	80.60
C1B	10:44	11/26/24	6.40	92.51	80.42
C1M	10:51	11/26/24	6.40	97.25	80.42
C1S	10:53	11/26/24	6.65	94.62	80.60
C2B	11:01	11/26/24	6.89	98.11	80.42
C2M	11:06	11/26/24	6.32	92.23	80.42
C2S	11:09	11/26/24	6.81	99.22	80.60
Units			mg/mL	% Saturation	Fahrenheit
DL			0.01	0.01	0.01

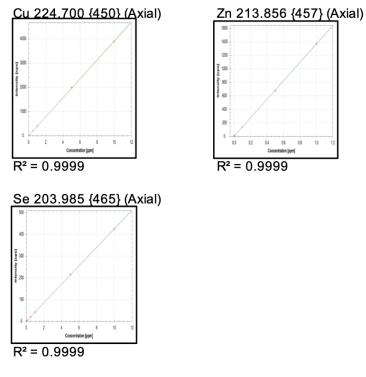
GRAB SAMPLE RESULTS

Sample ID	<u>Time</u>	<u>Date</u>	рН	<u>Salinity</u>	Turbidity
Z1B	8:50	11/26/24	8.10	35.45	0.07
Z1M	8:58	11/26/24	8.10	35.34	0.07
Z1S	9:02	11/26/24	8.10	35.43	0.09
Z2B	9:16	11/26/24	8.10	35.39	0.08
Z2M	9:20	11/26/24	8.10	35.30	0.07
Z2S	9:21	11/26/24	8.10	35.18	0.10
Z3B	9:32	11/26/24	8.10	35.36	0.06
Z3M	9:38	11/26/24	8.10	35.48	0.05
Z3S	9:41	11/26/24	8.10	35.34	0.07
Z4B	9:55	11/26/24	8.10	35.26	0.07
Z4M	9:59	11/26/24	8.10	35.39	0.09
Z4S	10:02	11/26/24	8.10	35.25	0.11
EB	10:20	11/26/24	8.10	35.35	0.07
EM	10:26	11/26/24	8.10	35.27	0.11
ES	10:32	11/26/24	8.10	35.47	0.10
C1B	10:44	11/26/24	8.10	35.36	0.10
C1M	10:51	11/26/24	8.10	35.27	0.11
C1S	10:53	11/26/24	8.10	35.42	0.11
C2B	11:01	11/26/24	8.10	35.49	0.08
C2M	11:06	11/26/24	8.10	35.24	0.06
C2S	11:09	11/26/24	8.10	35.21	0.07
Units				PPT	NTU
DL			0.01	0.01	0.01

ICP RESULTS

Laboratory Test Results

Description: November 2024, 4 water samples for copper, zinc, and selenium Job 2279


		Γ		mg/L	
<u>Site</u>	<u>Month</u>	UHH Lab ID	<u>Cu</u>	<u>Zn</u>	<u>Se</u>
ES	November	2279-1	ND	ND	ND
ES duplicate	November	2279-1 dup	ND	ND	ND
EM	November	2279-2	ND	ND	ND
EM duplicate	November	2279-2 dup	ND	ND	ND
EB	November	2279-3	ND	ND	ND
EB duplicate	November	2279-3 dup	ND	ND	ND
EC	November	2279-4	ND	ND	ND
EC duplicate	November	2279-4 dup	ND	ND	ND
Method Blank			ND	ND	ND
Detection Limit			0.001	0.01	0.01

Method used: EPA 200.8

ICP QA/QC

Curves for Job 2279

QC utilized 2008CAL-2

Quality control samples

		mg/L	
	<u>Cu</u>	<u>Zn</u>	<u>Se</u>
Quality Control (QC) Sample	0.10	0.11	0.10
Accepted Range of QC	0.10 <u>+</u> 10%	0.10 <u>+</u> 10%	0.10 <u>+</u> 10%

06 0.8

Please call if you have any questions regarding the water quality monitoring report.

Sincerely,

John Burns, Ph.D. Associate Professor - Marine Science and Data Science University of Hawai'i at Hilo Affiliate Researcher - NOAA Papahānaumokuākea Marine National Monument 200 W. Kawili St. Hilo, HI 96720 Lab website: www.themegalab.org/

Natural Energy Laboratory of Hawaii Authority Water Quality Laboratory

Sample Chain of Custody

73-4460 Queen Kaahumanu Hwy, #101, Kailua-Kona, HI 96740 808-327-9585 http://nelha.hawaii.gov

Client Name: <u>Blue Ocean Mariculture/MEGA Lab</u> Address: <u>200 W. Kawili St., Hilo HI 96720</u> Phone: <u>808-854-4057</u> Eav.
Eax
200 W. Kawili St., Hilo HI 96720
lame: Blue Ocean Mariculture/MEGA Lab

Project Information: Offshore monitoring	
Project Location: Keahole Point	
Turn-Around Time:	
Notes:	

Cample ID	Collection	tion	Sample	Sampler's	T	Bottle	Comments / Field
	Date	Time	Matrix	Initials	l est(s) kequestea:	Quantity	Data:
Fishcage, ZOM, Control	W/26/28 8:50	8:50	0	EL.	Inorganics, totals, turbidity	21	
	-						

—		er		'n
Matrix Key:	E = effluent	GW = groundwater	10 = ocean water	X= other/unknown
Temp [°] C:		5		<u>×</u>
Date/Time				
Received By:				
Date/Time	1/26/24 12:55	-		
Relinquished By:	T. Burne HD)		

E-mail: johnhr@hawaii.edu

WATER SAMPLE CHAIN OF CUSTODY FORM

Company:	Blue Oc	ean Mari	culture Teleph	none # <u>808-331-8222</u>	Fax # :			
Contact:	Tyle	er Korte		_ Client Project Numbe	r: MEGA-WQ-METALS-NOV	/-2024		
Relinquished by	•	J. Burn	S	Date: 11/26/202	24 Time:	16:32		
Written Report 7	ro: Blu	ue Ocear	n Mariculture					
Project Name:	Water	Quality	Monitoring					
Turn-Around (Circle One): Same Day 24 Hour 2 - 5 Day <mark>1 - 4 Weeks</mark> Months Rush After Hour Rush								
For Laboratory Use Only								
Project # ^N	IEGA-WQ-META	ALS-NOV-202	4	Method:	ICP-METALS			
Samples Receive	ed by: <u> </u>	JHH EPS	CoR Analytical Lab	Date:11/26/20	D24 Time:	16:32		
Client Sample Number	Date	Time	Sample Type	Containers	Requested Analyses	Sampled By		
EB	11/26/24	10:20	Seawater	250ml	Metals	JB		
EM	11/26/24	10:26						
ES	11/26/24	10:32	\checkmark	\checkmark		\checkmark		

Results Transmitted/Date:___

Low ayr

Fax/Phone By: _____